
LLNL-JRNL-662817

CoreTSAR: Core Task-Size
Adapting Runtime

T. R. W. Scogland, W. Feng, B. Rountree, B. R.
de Supinski

October 16, 2014

IEEE Transactions on Parallel and Distributed Systems
(TPDS)

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

1

CoreTSAR: Core Task-Size Adapting Runtime
Thomas R. W. Scogland? Wu-chun Feng? Barry Rountree† Bronis R. de Supinski†

? Department of Computer Science, Virginia Tech, Blacksburg, VA 24060
† Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551

tom.scogland@vt.edu wfeng@vt.edu rountree@llnl.gov bronis@llnl.gov

F

Abstract—Heterogeneity continues to increase at all levels of comput-
ing, with the rise of accelerators such as GPUs, FPGAs, and other co-
processors into everything from desktops to supercomputers. As a con-
sequence, efficiently managing such disparate resources has become
increasingly complex. CoreTSAR seeks to reduce this complexity by
adaptively worksharing parallel-loop regions across compute resources
without requiring any transformation of the code within the loop. Our
results show performance improvements of up to three-fold over a
current state-of-the-art heterogeneous task scheduler as well as linear
performance scaling from a single GPU to four GPUs for many codes.
In addition, CoreTSAR demonstrates a robust ability to adapt to both a
variety of workloads and underlying system configurations.

1 INTRODUCTION

While heterogeneous systems are becoming more pop-
ular, their programming models deter many potential
users. Unlike adding more or faster CPUs, where exist-
ing programming models work without code changes,
programs must be explicitly updated to use GPUs and
other accelerators. Rather than grapple with unfamil-
iar programming models, users often run their CPU-
only code on accelerated resources, leaving a signifi-
cant portion of the computing resources idle. Acceler-
ated OpenMP, our term for a class of directive-based
programming models including OpenMP for Acceler-
ators [9] and the PGI accelerator model [21] among
others, can ease this transition by allowing users to
target accelerators with a familiar OpenMP-style syntax.
However, Accelerated OpenMP is not a panacea: current
iterations help one move their computation to a single
accelerator with straightforward syntax. Once moved
however, there is no way to workshare a loop across
multiple devices without manually targeting each device.

In order to target, for example, a GPU and four CPU
cores, a user must manually split the work, run that
work on each separate device, and manually merge

This material is based upon work supported by the U.S. Department of
Energy’s Lawrence Livermore National Laboratory; Office of Science, under
Award number DE-AC52-07NA27344; Office of Advanced Scientific Com-
puting Research (LLNL-JRNL-662817); the Air Force Office of Scientific
Research (AFOSR) Computational Mathematics Program via Grant No.
FA9550-12-1-0442; NSF I/UCRC IIP-1266245 via the NSF Center for High-
Performance Reconfigurable Computing (CHREC); and a DoD National
Defense Science & Engineering Graduate Fellowship (NDSEG)

each result. Any load balancing, coherency, or runtime
adaptation of any kind must be reimplemented by every
user. So, while Accelerated OpenMP can parallelize se-
rial code via annotation, it lacks the ability to scale and to
load-balance work transparently on the hardware found
at runtime.

Our work enables safe and efficient worksharing
across devices in Accelerated OpenMP. To do so, we
must address two primary concerns. First, we man-
age memory input and output across multiple address
spaces without requiring alterations to the associated
parallel loop. Second, we divide work across devices
with vastly different computational capabilities fairly
and efficiently. In all, our CoreTSAR (Task-Size Adapting
Runtime) library automates the scheduling, load bal-
ancing, and cross-device data management for safe and
efficient worksharing. This paper presents the design
and implementation of CoreTSAR and the extended
Accelerated OpenMP syntax to integrate its functionality.
Specifically, we make the following contributions:

• The design and syntax of a multi-target, workshar-
ing construct for Accelerated OpenMP;

• The design, implementation, and optimization of
our scheduling and memory management library,
CoreTSAR, which can be used with any Acceler-
ated OpenMP compiler/runtime or with CUDA and
CPU OpenMP directly;

• Seven adaptive scheduling policies, spanning from a
low-overhead but coarse-grained adaptive approach
to a chunk-based, fine-grained scheduling approach
for distributing work.

• A rigorous performance evaluation of CoreTSAR
that demonstrates how runtime scheduling can sig-
nificantly improve performance while maintaining
programmability.

The rest of the paper is composed as follows. Section 2
offers motivation and background. Section 3 describes
the design of CoreTSAR, including our task management
concept, scheduling mechanisms, and memory manage-
ment. Details on our implementation follow in Section 4.
Section 5 present our results. Related work follows in
Section 6 and conclusions in Section 7.

2

1 void runGemm(T **a_a, T **b_a, T **c_a) {
2 T *a = *a_a, *b = *b_a, *c = *c_a;
3 //OpenMP
4 #pragma omp parallel for
5 //Accelerated OpenMP
6 #pragma acc region for copy(c[0:N*N]) \
7 copyin(a[0:N*N],b[0:N*N])
8 //Accelerated OpenMP + extension
9 #pragma acc region for part_copy(c[1:N][0:N])\

10 copyin(b[0:N*N]) part_copyin(a[1:N][0:N])\
11 hetero(1, all, adaptive)
12 for (int i = 0; i < N; ++i) {
13 for (int j = 0; j < N; ++j) {
14 c[(i*N) + j] *= B;
15 for (int k = 0; k < N; ++k) {
16 c[(i*N)+j] += A * a[(i*N)+k] * b[(k*N)+j];
17 } } } }

1 __global__ void
2 cudag(T *a, T *b, T *c, T A, T B, int n) {
3 uint i = blockIdx.x * blockDim.x + threadIdx.x;
4 if(i < n) {
5 for (int j = 0; j < n; ++j) {
6 c[(i*N) + j] *= B;
7 for (int k = 0; k < n; ++k) {
8 c[(i*N)+j] += A * a[(i*N)+k] * b[(k*N)+j];
9 } } } }

10 void runGemm(T **a, T **b, T **c) {
11 T *ca, *cb, *cc; dim3 dB, dG;
12 size_t size = N*N*sizeof(T);
13 dB.x = 64; dB.y = dB.z = 1;
14 dG.x = (N/dB.x)+1; dG.y = dG.z = 1;
15 cudaMalloc(&ca, size);
16 cudaMalloc(&cb, size);
17 cudaMalloc(&cc, size);
18 cudaMemcpy(ca,*a,size,cudaMemcpyHostToDevice);
19 cudaMemcpy(cb,*b,size,cudaMemcpyHostToDevice);
20 cudaMemcpy(cc,*c,size,cudaMemcpyHostToDevice);
21 cudag<<<dG,dB>>>(a, b, c, A, B, N);
22 cudaMemcpy(*c,cc,size,cudaMemcpyDeviceToHost);
23 }

1 #pragma omp target device(smp,cuda)
2 void gemm(T *a, T *b, T *c, int i, T A, T B, int n);

3 #pragma omp target device(smp) copy_deps
4 #pragma omp task input ([n] a, [n*n] b) inout ([n] c)
5 void gemm(T *a, T *b, T *c, int i, T A, T B, int n) {
6 for (int j = 0; j < n; ++j) {
7 c[j] *= B;
8 for (int k = 0; k < n; ++k) {
9 c[j] += A * a[k] * b[(k*n)+j];

10 } } }

11 #pragma omp target device(cuda)
12 __global__ void
13 cudag(T *a, T *b, T *c, int i, T A, T B, int n)
14 { unsigned int j = blockIdx.x * blockDim.x + threadIdx.x;
15 if(j < n) {
16 c[j] *= B;
17 for (int k = 0; k < n; ++k) {
18 c[j] += A * a[k] * b[(k*n)+j];
19 } } }

20 #pragma omp target device(cuda) copy_deps implements(gemm)
21 #pragma omp task input ([n] a, [n*n] b) inout ([n] c)
22 void gemm_gpu_wrap(T *a, T *b, T *c, int i, T A, T B, int n)
23 {
24 __global__ void
25 cudag(T *a, T *b, T *c, int i, T A, T B, int n);

26 dim3 dB, dG;
27 dB.x = 64; dB.y = dB.z = 1;
28 dG.x = (n/dB.x)+1; dG.y = dG.z = 1;
29 cudag<<<dG,dB>>>(a, b, c, i, A, B, n);
30 }

31 void runGemm(T **a, T **b, T **c) {
32 for (int i = 0; i < N; ++i) {
33 gemm(a[i], b[0], c[i], i, A, B, N);
34 }
35 #pragma omp taskwait
36 }

Fig. 1: A basic GEMM kernel as implemented in OpenMP variants (top left), CUDA (bottom left) and OmpSs (right).

2 BACKGROUND AND MOTIVATION

As heterogeneous systems spread through the market-
place, so do programming models that target them.
While a variety of programming models exist, most fit
into one of three categories: (1) loop-offload models; (2)
block-and-grid models; and (3) blocked-task models.

Loop-offload models include variants of Accelerated
OpenMP [9], OpenACC [3] HMPP [13], PGI accelerator
directives [21], and Intel OpenMP offload extensions for
their Xeon Phi coprocessors. They extend an OpenMP-
like annotated, serial, source model with data-movement
declarations to offload work to a device with a distinct
address space. The top left of Figure 1 shows a basic
molecular modeling kernel (GEMM) implemented seri-
ally with OpenMP, Accelerated OpenMP, and our pro-
posed Accelerated OpenMP extensions. With no prag-
mas, the loop runs serially, as one would expect. The
OpenMP pragma on line 4 workshares the loop across
CPU cores. Accelerated OpenMP’s pragma (lines 6-7)
adds explicit in copies of the a and b arrays and an inout
copy of c. Each of these first two pragmas workshares
the loop iterations across a single address space, either
CPU cores or a single GPU. We discuss the third pragma
at the end of this section.

Block-and-grid models include CUDA [1] and
OpenCL [2]. These low-level models specifically target
GPU-like hardware by offloading blocks or groups
of threads to an array of cores, each of which is a

SIMD unit. Generally these cores share memory with
one another but not directly with the CPU. The lower
left of Figure 1 shows an example using CUDA. In
addition to changing the array accesses, explicit memory
allocation and copies are required to move data to and
from the device. The loop is converted into a grid of
threads, each of which executes a single iteration in
the cudag() kernel, which must be called with the
number of blocks and threads per block. As with the
loop-offload example, this code uses exactly one GPU.

Blocked-task models, like OmpSs [14] and StarPU [?],
specify tasks and their dependencies in terms of blocks
of data (and sometimes other tasks). The right-hand
code-block in Figure 1 uses OmpSs to implement the
GEMM kernel with load balancing across CPUs and
GPUs, so it contains both CPU and CUDA kernels, both
aliased to the gemm() function by the compiler. Each
call to gemm is given the start address of the block, in
this case a row, to process. These calls are converted into
tasks, which are enqueued into the OmpSs runtime with
their data. Each task can then be scheduled, individually,
on any device an implementation is available for. Since
the task size is fixed, each task must encompass enough
work to occupy all compute units on a GPU long enough
to amortize the overhead of scheduling it; on the other
hand, each task must also be small enough not to
overload a single CPU core.

Each programming model has its advantages and dis-

3

advantages. The block-and-grid approach (e.g., CUDA
or OpenCL) is highly efficient on the GPU and offers
maximum control over them. The loop-offload version
requires the least change from serial or OpenMP code,
but it offers less control. Blocked-task models offer con-
trol through direct use of the other models as well as
automatic load-balancing across all compute resources.
Unfortunately, they also require the greatest departure
from the original code.

Therefore, we need a programming model that offers
the performance of block-and-grid models, flexibility
of blocked-task models, and programmability of loop-
offload models. Our proposed extensions, along with
our prototype library implementation, brings us closer
to this goal by introducing work-sharing across devices
to Accelerated OpenMP without requiring a specific task
granularity from the user. The third pragma, in the upper
left of Figure 1 (lines 9-11) illustrates how our proposed
extension would work-share the GEMM loop across an
arbitrary number and type of supported devices. Thus,
it offers more flexibility in the region than even blocked-
task models, while maintaining the serial loop as written.

3 DESIGN

This section presents the design of our proposed exten-
sion, schedulers and memory management infrastruc-
ture. CoreTSAR safely divides annotated, un-blocked,
serial loops, as used in many traditional OpenMP ap-
plications, and schedules them across heterogeneous
resources. We add a clause to Accelerated OpenMP
that is similar to the schedule() clause. The OpenMP
programming model imposes the following constraints
on our design:

1) Use existing, unchanged code in the Accelerated
OpenMP loop region;

2) Treat the accelerated loop as a group of related
tasks that are defined by the loop code and the
region directive including its associated clauses;

3) Maintain data consistency outside of the region and
do not alter data accesses in the existing loop body
although we can extend the data copy clauses of
the region.

By following these constraints we preserve programma-
bility while adding significant new functionality.

3.1 The Proposed Extension

The CoreTSAR interface consists of two parts, which
Figure 2 depicts. The hetero() clause specifies how
to schedule the region and which classes of device
should be considered. For memory management, we add
the part_copy() clauses to provide the runtime with
sufficient information to partition input and output data
for the region safely.

Our clauses are permitted on the accelerator directive
or on any top-level accelerator loop construct, with the
same restrictions as existing accelerator loop constructs.

//items in {} are optional
#pragma acc region \

hetero(<cond>{,<devs>{,<sched.>{,<ratio>{,<div>}}}})\
part_copy{in/out}(<var>{(<size>}[<cond>:<num>{:<halo>}])\
persist(<var>)

#pragma acc depersist(<var>)

hetero() inputs
<cond> Boolean, true=coschedule, false=ignore

<devices> Allowable devices (cpu/gpu/all)
<scheduler> Scheduler to use for this region

<ratio> Initial split between CPU and GPU.
<div> How many times to divide the iteration space

part copy() and {de}persist() inputs
<var> Variable to copy.
<size> Size of each “item” in the array/matrix.
<cond> Whether this dimension should be copied.
<num> Number of items in this dimension.
<halo> Number of halo elements required.

Fig. 2: Our proposed extension

Specifically there must not be inter-iteration dependen-
cies other than those handled by reductions. Unlike
normal copy clauses, part_copy is not allowed on data
clauses as it only has meaning when directly associated
with a loop. We still support data regions, but only for
cases where complete replication of the input/output
is desired, as opposed to only those data regions that
are required. We define the properties of our clauses in
greater detail in the following sections.

3.2 Scheduling
In order to workshare the iterations in a given region ef-
ficiently, we must offer appropriate scheduling policies.
Each policy in CoreTSAR treats the iterations within a
loop region as a group of related tasks, which allows
us to select the scheduling granularity adaptively. For
example, CoreTSAR can break a region with 10,000
iterations into four chunks or a thousand or any number
less than 10,000 for scheduling, without modification and
without user intervention. This capability is critical for
efficiently scheduling across heterogeneous systems, as
a single grain size is rarely appropriate for all available
devices.

Existing OpenMP schedules for CPUs divide the iter-
ation space either evenly across processors statically or
into chunks that are assigned dynamically. The static ver-
sion is simple, efficient to implement, and consistent, but
does not load-balance. Alternatively, OpenMP’s chunk
based schedules (dynamic and guided) load-balance well
in homogeneous architectures. However, they suffer high
overhead due to synchronization at each work-request
and especially as a result of the lack of data locality
their dynamic algorithms cause. In heterogeneous sys-
tems they would also incur repeated kernel launches
and data transfers. We dealt with these issues in our
initial work with CoreTSAR [20], by designing a set
of adaptive schedules that statically divide the work
within each pass through a region but load-balances
across passes. This scheme proved effective, but it does
not tolerate imbalanced workloads well, whereas chunk-
based schemes can. To address that case and broaden our

4

I =total iterations
ij =iterations for

compute unit (CU) j
fj =fraction of iterations

for CU j
pj =recent time/iteration

for CU j
n =number of CUs

t
+/−
j =time over/under equal

min(

n−1∑
j=1

t+j + t−j) (1)

n∑
j=0

fj = 1 (2)

f2 ∗ p2 − f1 ∗ p1 = t+1 − t−1 (3)

f3 ∗ p3 − f1 ∗ p1 = t+2 − t−2 (4)

...

fn ∗ pn − f1 ∗ p1 = t+n−1 − t−n−1 (5)

Fig. 3: Our adaptive scheduler’s deviation minimization
algorithm as a linear program, variables at left

evaluation, we have developed a number of new chunk-
based designs as well as a hybrid of the two approaches.

3.2.1 Static/Adaptive Schedulers
Our static and adaptive schedulers [19], [20] predict
the time that each device will take to complete an
iteration in the next pass and generate a single task
for each device sized such that all finish the region
as close to simultaneously as possible. These sched-
ulers make two assumptions: (1) the average runtime
of an iteration in the region is constant on a device;
and (2) subsequent passes through the region have the
same performance ratio as the previous pass. Also,
our schedulers begin with a default time per itera-
tion for each device until we have gathered runtime
data. This default is either a user-defined value, one
saved from a previous run, or one based on the for-
mula 1/(deviceSIMDWidth/baseDeviceSIMDWidth). While
we do not claim that this formula accurately models
the relative performance of devices, in practice we have
found it to be accurate for dense floating-point kernels.
We leave further exploration of default values as future
work.

The linear program in Figure 3 uses the time per itera-
tion value for each device to calculate the fraction of the
total available iterations that should be allocated to each
device. In words, the program finds the fractions of work
that result in the minimum deviation between predicted
execution times. (Our initial version of this linear pro-
gram calculated the optimal number of iterations directly
as an integer solution, giving theoretically optimal splits
based on our model. This integer solution, however, was
impractical to run online due to high calculation costs.)
The linear program formulated in Figure 3 dramatically
reduces the calculation costs and is designed to still yield
an optimal fractional result, allowing the solution to be
off by up to one iteration on each device but decreasing
the computation time by several orders of magnitude.

Our static schedule applies this linear program to the
default, or supplied, values once at the beginning of the
first pass through a region, then reuses the result there-
after. The adaptive schedules (adaptive, split and quick)
use a first pass with the static schedule as a training
phase. The first time that we encounter a CoreTSAR
region, we assign work based on the static schedule

and then measure the times on each device. For each
following scheduling decision, we use measured times
per iteration in the linear program, converging on a more
efficient schedule. Our design intentionally includes all
recurring data transfer and similar overheads required
to execute an iteration on a particular device, naturally
incorporating data transfer and launch overheads.

Adaptive trains on the first full pass through the region,
then adapts at the beginning of each subsequent pass.
Split is designed to adapt within regions that either
cannot tolerate a full pass with a poor schedule, or only
run once per application run. Split breaks each pass into
several evenly split subpasses, based on the div input.
It treats each subpass as the same as a full pass with
adaptive. While split provides better, and earlier, load-
balancing for some applications, it increases overhead
in each pass. Quick balances between split and adaptive
by executing a small subpass for its first training phase,
similarly to split. It then schedules and runs all itera-
tions remaining in the first pass, and uses the adaptive
schedule for all subsequent passes. This schedule suits
applications that cannot tolerate a full pass using the
static schedule or the overhead of extra scheduling steps
in every pass.

3.2.2 Chunk Schedulers

Chunk schedulers are exemplified by the OpenMP dy-
namic schedule, in which a chunk size specifies the
number of iterations assigned to each thread each time it
requests work. These schedulers effectively use a work
queue approach, which offers natural load balancing.
While it is a classic load balancing approach, it is most
effective when used with homogeneous computing re-
sources with fast synchronization mechanisms, which is
not the environment that CoreTSAR targets. Thus, we
present variations on this method for hybrid systems.

Specifically, we design three new schedules (chunk,
chunk static and chunk dynamic). Chunk serves as our
baseline chunk scheduler, and is functionally identically
to OpenMP’s dynamic schedule. Chunk static scales the
chunk size for each device based on the same scheme
used in the static schedule above. Thus, larger chunks are
provided to devices with greater compute power. Finally,
chunk dynamic begins in the same way as chunk static then
dynamically adapts the chunk size for each device based
on their performance. Unlike the adaptive schedulers, it
does not employ the linear program to determine the
new chunk size since the chunk schedulers do not have a
natural barrier point where all times have been updated.
Instead, it employs an annealing approach that computes
a weighted average of the time per iteration for each
device, and attempts to reduce the time per iteration by
increasing or decreasing the chunk sizes. For example,
if the time per iteration on a device decreases with an
increased chunk size, chunk dynamic again increases that
chunk size. In this design, each device is independent
and does not block on the others in order to adapt.

5

3.2.3 Hybrid Scheduler
In addition to the schedulers that are strictly chunk or
ratio based, we also investigate a hybrid chunk schedule
that begins as a chunk dynamic schedule and after the
first pass transitions into the adaptive scheduler. Chunk
dynamic adapts and load balances quickly during the first
pass while refining the split. However, after that first
pass, it incurs unnecessary overhead in contention and
memory transfers, where adaptive excels. Using chunk
dynamic in place of static for the training phase of adaptive
naturally fuses the advantages of both schedulers.

3.3 Memory Management
In order to maintain memory coherency across address
spaces while dynamically splitting the region, CoreTSAR
requires information about the memory access pattern
of each iteration of the loop. The primary design goal of
our memory manager is to support unblocked input and
output data naturally. Our interface covers the majority
of common dense storage cases, and can be used at
some memory overhead with various more complex or
sparse schemes, while a method to specify any possible
association is an ongoing topic of research, including our
future work. As we discuss in Section 4, our prototype
library implements the memory management for all
examples evaluated in Section 5.

For each variable the part_copy(), or partial copy,
interface requires at least a variable name, one dimension
to copy, and the number of items in that dimension.
Given the clause part_copyin(a[1:N]), a[i] will
be copied, where i is the current loop iteration, to
the device that executes that iteration. If a range of i
from 5− 500 is assigned to a device, a[5-500] will be
copied. Thus, the partial copy is associated with the loop
iteration(s) of the loop being split.

Figure 4 displays two simple examples of patterns
produced by our memory-association syntax. The top
example specifies that a 10×10 matrix is being registered
to the region, and the iterator will be associated with
the column dimension, assuming C ordering, since the
column dimension’s condition is true. The lower exam-
ple selects the row dimension instead, and additionally
specifies that one halo element is required on either side
of that dimension. This pattern is typical of stencil-type
computations, where halo values are required as input,
but are not updated by the device reading them, having
the halo argument makes supporting such associations
natural.

Our interface does not directly support random access
output, reverse indices or indirect indices. For input,
these can all be supported at the cost of additional
overhead by copying the entire data set, since the input
process is non-destructive.

3.4 Example Usage
Figure 5 shows how to use our proposed interface to
implement the example in Figure 1. All options, in-
cluding those that use default values, are specified for

Main Memory GPU-0 GPU-1

#pragma acc region hetero(TRUE) \
pcopy(mat[false:10][true:10])

#pragma acc region hetero(TRUE) \
pcopy(mat[true:10:1][false:10]

Associate this matrix to the following
outer loop iterator by row:

Associate this matrix to the following
outer loop iterator by column, with one
boundary cell required for input only on

either side:

Memory not used on this device Input and outputInput only Output only

Fig. 4: Example memory association patterns, assuming
a pass in which two iterations are assigned to the CPU
device, and four each to two GPUs.

void runGemm(T **a_a, T **b_a, T **c_a) {
T *a = *a_a, *b = *b_a, *c = *c_a;

#pragma acc region for part_copy(c[1:N][0:N]) \
part_copyin(a[1:N:0][0:N:0]) copyin(b[0:N*N])\
hetero(1, all, adaptive, default, 10)

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; ++j) {
c[(i * N) + j] *= B;
for (int k = 0; k < N; ++k) {
c[(i*N) + j] += A * a[(i*N) + k] * b[(k*N) + j];

}
}

}
}

Fig. 5: Our proposed extension to accelerated OpenMP.

part_copyin(a...) and hetero(...) in the exam-
ple. The minimum necessary to specify the copy cor-
rectly are used for part_copy(c...). In this example,
the loop will always be split across devices using the
adaptive scheduler with the default ratio and a div of 10.
The copies specify that the a array is two-dimensional,
of size N by N, made up of elements of size sizeof(T),
and that iteration i requires row i of a but not column
i. The c copy specifies the same as for a except that
it should be copied both in and out. The traditional
copyin() clause from accelerated OpenMP is used for
b since all participating devices need access to the full
region. Complete output, in the form of copyout(), is
not allowed however because there is no way to resolve
the changes between versions. We may investigate this
in future work.

4 IMPLEMENTATION

We implement CoreTSAR as a C library on top of
Accelerated OpenMP, tested with PGI Accelerator and
Cray’s Accelerated OpenMP. Our evaluation in this pa-
per focuses on PGI Accelerator, so our examples use
its directive format. This section discusses our imple-
mentation including its portability, API and our memory
manager as well as some necessary deviations from the
design discussed in Section 3.

4.1 GPU Back-off
Some applications are not amenable to being run on
GPUs, or at least the GPUs present in some systems.
While iterations of a region may benefit greatly from

6

running on an NVIDIA c2075, they may perform poorly
on an NVIDIA GeForce GT 520. In order to maintain
portability across disparate accelerator and CPU capa-
bilities, CoreTSAR implements GPU Back-off support in
all adapting schedulers.

The back-off system is implemented differently for
each of the two scheduler types. In the adaptive sched-
ulers CoreTSAR converts a GPU offload thread into
a CPU thread when the GPU has a higher time per
iteration than the slowest CPU core for a configurable
number of passes (default is two). We use multiple
iterations since under certain circumstances, such as
loading large persistent datasets for the first time, or
an inappropriate initial amount of work, a device can
be erroneously classified as slower than the CPUs. With
the chunk schedulers, we base the decision on whether a
given GPU completes fewer iterations than the slowest
CPU core during each pass of a configurable number
of passes. This difference compensates for the some-
times highly variable time per iteration when bootstrap-
ping chunk schedulers across initial data copies, which
can cause false conversions with the adaptive back-off
scheme. We discuss the effects of this extension further
in Section 5.

4.2 Memory Management

The existing memory interface of Accelerated OpenMP
is insufficient to express the relationships necessary
to handle certain kinds of memory association. While
Accelerated OpenMP does natively support copying a
subset of an array, it does not support copying multiple
subsets of one array, nor does it support non-contiguous
rectangular sections such as a subset of the columns of
a 2D array.

In order to support our desired memory association
interface, CoreTSAR implements its own memory man-
ager, using the deviceptr() clause to pass CoreTSAR
managed memory into Accelerated OpenMP regions. We
offer a straightforward syntax by which users specify the
data required by a given iteration. Given that informa-
tion, CoreTSAR automatically copies the ranges of data
required by whatever iterations are assigned to a given
device for that pass. When possible the memory manager
uses pinned memory to accelerate copies, as well as
asynchronous copies to and from the device in order to
overlap them with scheduling and synchronization.

Currently, the CoreTSAR memory manager handles a
restricted set of partial copies. In addition to the straight-
forward one-to-one relations, CoreTSAR also supports
stencils through padding, and row, column or planar
associations on two and three dimensional matrices. In
order to support reductions we provide an API inspired
by user-defined reductions in OpenMP 4.0. We discuss
the details further in Section 4.4. While only a subset
of the possible cases, these mappings are sufficient to
implement all benchmarks evaluated in this paper.

4.3 Data Packing and Padding

Our original implementation of the memory inter-
face [20] had a material weakness. That version of
CoreTSAR allocated the full size of each memory region
on each device in order to preserve offset accuracy. In
other words, any input or output array/matrix supplied
to CoreTSAR was allocated in full in all participating
address spaces. Managing subset allocation and access
without invalidating offsets and iterator values is a
difficult problem, especially in languages like C.

We have redesigned CoreTSAR to support three kinds
of regions depending on how the data is mapped. The
first, and most simple, case is a one dimensional partial
array or two dimensional array that is associated by
rows. Since all of the resulting subsets are contiguous,
the runtime provides an offset pointer that can be in-
dexed by the original offsets without issue. No further
action or overhead is required for this case, and a sig-
nificant amount of storage on accelerators can be saved.
The second case is where a two or more -dimensional
array is associated by columns. CoreTSAR can pack
these, but must have control over the calculation of
offsets into the resulting matrix. As such, we handle
this case in our translator for contiguous arrays accessed
with array[i][j] style syntax, but currently do not
support dynamically-allocated C arrays accessed with
the array[i*row_size + j] syntax, though these
can be supported by directly using the C API functions.
Third, associations can use both the row and column
associations, resulting in a region resembling a plus-sign
being assigned to each device. Since these require the full
range in both rows and columns, even though they may
not need the corners, CoreTSAR is forced to allocate the
full size of such arrays.

By allowing data regions to be packed, CoreTSAR
gains two extra capabilities beyond reducing memory
usage on target devices. The packing functionality al-
lows any chunk-based scheme to place a low bound
on memory use by selecting a small chunk size. This
allows large data sets on the host to be streamed through
accelerators without enough memory to hold even their
assigned sub-part of the problem. When used in this
mode however, CoreTSAR becomes similar to a blocked-
task system, including the increased task management
and data-transfer overhead that implies.

Perhaps more importantly however, the capability to
adjust indexing, as described for column-wise associated
multi-dimensional arrays, allows regions not only to be
shrunk to save space, but also padded for alignment.
As is well known, memory alignment is important for
the performance of SIMD computations and coalesced
memory accesses are important to the performance of
GPU kernels. Given the ability to pad rows beyond the
data assigned to each device, or even rows of data that
are mis-aligned by the user, CoreTSAR can ensure that
each row is aligned for most efficient access on each
target. We implement this optimization by ensuring that

7

0 − Native 1 − CoreTSAR Auto−Padded

0

5

10

15

0

5

10

15

20

2xN
V

ID
IA

 k20xs
4xN

V
ID

IA
 c2070s

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Row−length modulo 32, range from 8192 to 8223

R
un

tim
e

(s
ec

on
ds

)

Fig. 6: Runtime of GEMM kernel on square matrices,
statically scheduled across GPUs only with and without
auto-padding

the length of each row in a matrix is a multiple of
the target device’s SIMD width. While in some cases
this choice is more strict than required, it is consistently
sufficient to ensure reasonable alignment.

Figure 6 shows the effect that even small changes in
row-width can have on performance without padding,
and how our auto-padding helps. The figure represents
the performance of a general matrix multiplication ker-
nel when run with row and column lengths ranging from
8,192 to 8,223 elements in increments of one, specifically
the x-axis values are the number of elements over 8,192
in each row. On our primary evaluation system, with
four c2070 GPUs, a square matrix of size 8192 × 8192
runs in 7.9 seconds. Increasing that size by only one
element on each side more than doubles that runtime
to 19.5 seconds. In fact, every odd-numbered increase in
size takes approximately the same increased time, while
each power of two increase does better up to 16, or a
total of 8208, which performs the same as the original
8192. Another system with a pair of k20x GPUs shows a
nearly identical stepped pattern as well. The difference
in performance is somewhat smaller, ranging from 10.9
seconds at the zero and 16 positions and 15.2 at the
odd offsets.The L2 read request performance counters
provide a partial explanation for the wide range in
performance. When padding is enabled, the difference
in L2 requests with a multiple of 16 row length is
consistently within 10%; for any odd length it balloons
to 80% more L2 accesses for the un-padded version.
This increase is due to a greater number of reads being
required to accommodate the mis-aligned read requests
of each warp on the GPUs, increasing contention and
lowering cache efficiency overall. On the right-hand-
side of the plot, you can see that CoreTSAR’s automatic
padding smooths out these issues. Also, when dividing
a data-set column-wise, this padding support can ensure
alignment even when the appropriate amount of work to
be assigned is not a multiple of the target device’s native
SIMD width, an important consideration for several of
our benchmarks.

4.4 CoreTSAR API and Usage
This section describes the low-level API to the CoreTSAR
library in detail.

ctsar init Initializes an instance of the CoreTSAR run-
time, one such instance should be used for each region
that is to be separately scheduled. The parameters allow
a user to set the default scheduler, allowed devices, the
default time per iteration for each accelerator as an array
of doubles (NULL for defaults), and how finely the split
and quick schedulers should divide regions (NULL for
default).

ctsar next Computes the division of work for the
region associated with c based on size total iterations.
This function is also responsible, updating appropriate
memory regions on each target device and starting
timers to evaluate each device’s performance.

ctsar loop In order to support split, quick and the
chunk schedulers, CoreTSAR must reevaluate the loop
with each thread repeatedly. The ctsar_loop function
serves as the condition for a do/while loop surrounding
each region. In addition to managing repeats, the loop
function is responsible for synchronization, GPU back-
off support, copying data back from all devices, complet-
ing reductions, and calculating performance statistics at
the end of each pass.

ctsar reg mem{ 2d} These functions register a host
buffer with CoreTSAR. The full version takes a pointer
to CPU memory, the size of an element of the input
data, the number of element in each row/column, the
number of halo elements required, and a flag option that
allows the user to control copy direction and type. The
non-2D version is shorthand for 1D arrays. The return
value is a pointer to the memory assigned to the calling
thread, which may or may not be identical to the original
pointer.

The flags value controls whether memory is copied in
or out or both, as well as whether to copy persistently,
partially by rows or partially by columns and whether
padding is to be allowed, if it is, an extra output pa-
rameter for the new row size is required. Partial copies
are integral to the correct functioning of CoreTSAR as
they make automatic merging of output possible. They
also improve performance of input operations. The 2D
interface supports all specifications discussed in Sec-
tion 3, except that it does not handle matrices with
dimensionality higher than 2.

Regardless of the flags, CoreTSAR allocates an ap-
propriate size buffer on the device associated with the
calling thread. If the region is set to persistent, data
is immediately and asynchronously copied from the
CPU array into the newly allocated memory, where
it resides until it is explicitly removed with a call to
ctsar_unreg_mem().

ctsar unreg mem De-registers the pointer from the
region instance, frees the memory that stores the state
of the data, and frees persistent regions.

ctsar retarget mem Re-target allows a user to specify
that the region already allocated for pointer old should

8

void runGemm(T **a_a, T **b_a, T **c_a) {
ctsar * s = NULL; int div = 10;
ctsar_init(&s,N,CTSAR_ADAPTIVE,CTSAR_DEV_ALL,NULL,&div);

#pragma omp parallel default(shared)
do{
T *a = ctsar_reg_mem(s, a_a[0], sizeof(T)*N, N,

CTSAR_MEM_PARTIAL | CTSAR_MEM_INPUT);
T *b = ctsar_reg_mem(s, b_a[0], sizeof(T)*N, N,

CTSAR_MEM_INPUT);
T *c = ctsar_reg_mem(s, c_a[0], sizeof(T)*N, N,

CTSAR_MEM_PARTIAL | CTSAR_MEM_INOUT);
ctsar_next(s,N);

#pragma acc region for deviceptr(a,b,c) independent \
if(ctsar_get_type(s) == CTSAR_DEV_GPU)

for (int i = CSTART(s); i < CEND(s); ++i) {
for (int j = 0; j < N; ++j) {
c[(i * NJ) + j] *= B;
for (int k = 0; k < N; ++k)

c[(i*N) + j] += A * a[(i*N) + k] * b[(k*N) + j];
} }

}while(ctsar_loop(s));
}

Fig. 7: CoreTSAR library version of GEMM

be used to store the data pointed to by new on all
devices. A typical use is to swap buffers for double
buffering, although it can also be used to implement
blocked data transfers by re-targeting a pointer to the
new start pointer before entering a region.

ctsar reg reduc This function registers a reduction.
Because each memory space will have its own reduction
result, CoreTSAR must safely initialize the temporary
variables in each memory space and combine those
results into a meaningful final value. The identity pointer
points to an appropriate initial value to use on each
device. For example, in a sum the identity would usually
be 0, in a product 1, and so on. The item_size specifies
the size of the elements to be reduced. The reduc
argument is function pointer that should accept two void
pointer arguments, the first of which is both a value to be
reduced and the output, the second is another value to be
reduced. This function is called repeatedly to accumulate
the final value as each device finishes execution. For
simple reductions, the body of the function can be as
simple as *((int*)a)+=*((int*)b).

CSTART/CEND Macros used to retrieve the start and
end values to use for iteration in the loop region.

Figure 7 presents an example using this interface to
implement the extension as presented in Figure 5. In
this example, CoreTSAR is initialized with the adaptive
scheduler, default ratio, and div of 10. The parallel do-
while loop allows our library to reevaluate the code re-
gion as necessary by looping with the ctsar_loop(s)
call until done. The data regions are registered, as partial
input, complete input, and partial input/output, and
the appropriate pointers for those data regions on each
device are returned into the local copies of pointers a,
b and c. The ctsar_next() call calculates the num-
ber of iterations to be completed in this pass by each
device. Once it is complete, the CSTART() and CEND()
macros return the appropriate iterator range values for
the device that evaluates them. This syntax can either
be used manually, or generated by our python/libclang-
based source-to-source translator.

While the code is extended significantly around the
loop, we do not replicate or alter any code in the
loop body. The Accelerated OpenMP if() clause de-
termines if a thread runs on a GPU or CPU core. If
the device is a CPU, the loop is run serially on the
associated core completing its assigned iterations. If it
is a GPU-controlling thread, the acc region directive
workshares the assigned iterations across the associated
GPU. All codes used in our evaluation are implemented
in this fashion.

5 EVALUATION

This section evaluates the CoreTSAR library. We com-
piled all benchmarks with the PGI Accelerator com-
piler compiler suite version 12.9. Optimization flags are
-acc -ta=nvidia -O3 -mp=allcores. Table 1 lists
our test platforms. Unless otherwise specified, tests were
run on escaflowne. In tests with GPUs enabled, one
CPU core is used to control each selected GPU and does
not do computation. We use default scheduler param-
eters unless otherwise specified, with the initial split
calculated at runtime based on the available resources
and a div of 10. We include all scheduling overhead,
GPU data transfer time, and synchronization time in all
measurements.

Reported times and speedups include all activity that
the original OpenMP CPU code did not require, such
as library initialization, scheduling, and memory move-
ment. We do not include application IO or problem
setup that is shared between CPU, GPU and scheduled
versions. We also record the time for each device to com-
plete its assigned iterations, from which we can compute
the time that devices wait for others to complete, the
time spent to calculate the split for the next pass and,
as a subset of that, the time to solve the linear program.
Finally, we track the time per iteration for each device,
as described in Section 3.

5.1 Benchmarks
We use four applications and the PolyBench/GPU [15]
benchmark suite in our evaluation. CG [8] is a di-
rect port of the NAS conjugate gradient benchmark.
GEM [4] is a molecular modeling application for the
study of the electrostatic potential along the surface of
a macromolecule that has been extensively studied for
GPU optimization [12]. Helmholtz is a discrete finite
difference code that uses the Jacobi iterative method
to solve the Helmholtz equation. K-means is a popular
iterative clustering method. Our implementations of the
15 PolyBench/GPU benchmarks execute each compu-
tational kernel 10 times to mimic use in an iterative
scientific application more closely. Tests at 5 and 15
kernel executions yield similar relative results. Since we
are evaluating scheduling behavior, and not computa-
tional kernel performance, we made minimal changes
in porting each benchmark. As such, our computational
kernels are not optimized for the GPU other than by

9

CPU CPU CPU CPU GPU GPU GPU GPU
System name Model Cores/die Dies RAM (MB) Model Cards Cores RAM (GB)
amdlow3 E3300 2 1 2,012 Tesla C2050 1 448 3
armor1 E5405 4 2 3,964 GeForce GT 520 1 48 1
dna2 i5-2400 4 1 7,923 GeForce GTX 280 1 240 1
escaflowne X5550 4 2 24,154 Tesla C2070 4 448 6
hokiespeed E6545 6 2 24,154 Tesla M2050 2 448 3

TABLE 1: Test system specifications, all CPUs and GPUs are made by Intel and NVIDIA respectively.

the compiler. Nonetheless, CoreTSAR can easily support
optimized implementations through the same syntax.

For our purposes, benchmarks can be characterized
by the number of passes through the parallel region
that they make, the length of each of these passes,
and how suitable they are to run on the GPU. Table 2
characterizes these properties for each benchmark. The
table exhibits a wide range in number of passes through
the parallel region – 1 to 1900 passes in the applications,
and as high as 10240 passes for the GRAMSCHMIDT
benchmark. Our adaptive scheduler operates primarily
at the boundaries of parallel regions, so this number
can greatly affect our results. For example, in the GEM
benchmark, the adaptive schedulers are identical to the
static scheduler because the training pass is the only pass
in the application. Conversely, CG performs many short
passes, which allows CoreTSAR to adjust scheduling
decisions but incurs high scheduler overhead and data
copy costs.

The table also shows a wide range of performance
ratios. Values range from a 10× slowdown to a 113×
speedup going from eight CPU cores to one GPU. Run-
ning GEM on only one GPU finishes the problem more
than 10× faster than on eight server class Intel CPU
cores. CORR and COVAR also show extreme suitability,
largely due to the static schedule employed in the CPU
tests. Because the workloads are imbalanced, each CPU
core performs a different amount of work. The GPU test,
because of the load-balancing effect of over-provisioning
work-groups on GPUs, handles this variation better.
If we use the OpenMP dynamic schedule, COVAR
runs in approximately 150 seconds, 10× faster than the
static performance. Alternatively, GRAMSCHMIDT and
Helmholtz are not suited to GPU computation according
to these results. Generally, the suitabilities match our
expectations, with the exception of CG. Our previous
work, and that of others, has found that CG is suitable
for GPUs. Some of our experiments on other platforms
showed a ratio of approximately 0.55 on one GPU. Here,
the GPU version takes more than 5× longer than the
CPU version. This is due to the high cost of data re-
distribution across GPUs each iteration. We leave opti-
mization of CG to future work.

5.2 Input Parameters
As mentioned above, we use the default values for our
tests unless otherwise specified. However, chunk size
does not have an obvious default. Figure 8 illustrates
the performance for the basic chunk scheduler across
chunk sizes for each benchmark using one GPU. We do
not report chunk sizes in terms of absolute iterations,

Benchmark Passes Time/ CPU GPU Speedup
pass time time on 1GPU

CG 1900 0.045 16.31 92.37 0.17
GEM 1 5.336 71.05 5.65 12.59
Helmholtz 50 0.138 1.18 7.22 0.16
kmeans 7 0.583 5.70 4.33 1.32
ATAX 10 0.646 32.23 6.60 4.88
BICG 10 0.822 21.86 8.78 2.49
CORR 10 0.162 157.73 1.64 96.07
COVAR 10 1.328 1558.30 13.80 112.90
FDTD2D 5000 0.000 0.99 1.23 0.80
GEMM 10 1.262 301.34 3.04 99.18
GESUMMV 10 1.902 2.10 20.38 0.10
GRAMSCHMIDT 10240 0.004 4.21 40.38 0.10
MVT 10 0.058 1.62 0.60 2.72
SYR2K 10 1.461 14.39 15.53 0.93
SYRK 10 0.769 7.86 8.18 0.96
THREEDCONV 10 1.031 5.77 10.95 0.53
THREEMM 30 0.284 126.03 3.78 33.35
TWODCONV 10 0.607 2.86 6.46 0.44
TWOMM 10 1.445 204.66 6.32 32.41

TABLE 2: Benchmark characteristics, times in seconds,
time/pass for static schedule with CPUs and one GPU.

0

2

4

atax

bicg

cg corr

covar

fdtd2d

gem

gem
m

gesum
m

v

gram
schm

idt

helm
holtz

km
eans

m
vt

syr2k

syrk

threedconv

threem
m

tw
odconv

tw
om

m

Program

S
pe

ed
up

 o
ve

r
sl

ow
es

t c
hu

nk
 s

iz
e

Number of chunks 100 200 400 600 800 1000

Fig. 8: Performance across chunk sizes for each bench-
mark with the basic Chunk scheduler

which has little meaning across benchmarks. Instead,
we compare by the number of chunks into which the
region is partitioned. The performance of some appli-
cations varies little based on chunk size. Others, such
as CORR and COVAR, have a range of as much as 3×.
These ranges shift or even reverse in some cases as the
number of GPUs or scheduler changes, creating even
more variability. Due to the sensitivity to this parameter,
all subsequent results for chunk-based schedulers use
the best chunk size for that benchmark, scheduler, and
GPU count combination.

10

5.3 CoreTSAR Performance

We begin with an evaluation of the overall speedup
achieved for benchmarks across schedulers and GPU
counts on escaflowne, as Figure 9 depicts. All plots are
based on the speedup over a chunk-based CPU schedule
equivalent to OpenMP’s dynamic schedule across the 8
CPU cores. We can group these results roughly into three
groups of behavior: those that scale to all four GPUs;
those that benefit from GPUs but do not scale to more
than one; and GPU-averse applications.

5.3.1 GPU Amenable Applications

Eleven benchmarks scale to four GPUs on escaflowne,
resulting in between 3.5× and nearly 200× speedup.
First GEM, GEMM, kmeans, SYRK, SYR2K, TWOMM
and THREEMM scale nearly linearly from one to four
GPUs, missing linear only because of the use of one
CPU core for the addition of each GPU. Slightly off
of linear are CORR and COVAR, which gain perfor-
mance at approximately one quarter of that rate, but
consistently up to all four GPUs. Also in this group
are ATAX, BICG, and MVT, which clearly taper off after
two GPUs, since these benchmarks do not have enough
work available at this problem size, to occupy all four
GPUs fully. Further, we cannot increase the problem
size without overflowing the GPU memory due to the
way CoreTSAR’s memory model currently handles map-
pings. In another peculiarity of these three benchmarks,
the chunk scheduler performs almost identically to the
CPUs. While all three reap significant performance ben-
efits when run on GPUs, they are the only benchmarks
that use column-wise partial copies. The overhead of
column-wise copies for each chunk apparently causes
the runtime to deactivate all GPU threads for the basic
chunk scheduler.

In terms of individual benchmark behavior, GEMM
achieves the most speedup, which occurs with the static
GPU-only configuration. While this schedule is not an
adaptive, it is still facilitated by CoreTSAR, and for
extremely GPU suitable applications can outperform the
adaptive schedules. The CORR and COVAR benchmarks
superficially behave similarly, but for a different reason.
In their imbalanced workloads, each iteration i does n−i
units of work. Thus, they violate the assumption of the
adaptive schedulers that the average work per iteration
is constant. We expected one or more of the chunk
schedulers would perform best in this scenario, but both
CORR and COVAR are highly sensitive to overhead,
and cannot tolerate the additional launches and copies
of the chunk schedulers. Thus, the static schedulers
(GPU and static) perform best in most cases. In the four
GPU case for each, however, the split scheduler surges
ahead. Split stops using the CPU cores and schedules
across the GPUs in the three and four GPU cases. Our
linear program does not handle varying time per itera-
tion with heterogeneous hardware, but given relatively
homogeneous hardware it handles the heterogeneous

iterations much better. Using only GPUs, no CPU cores,
with the Adaptive schedule achieves a further 10-20%
performance improvement over the next best schedule
in each case for CORR and COVAR.

Also unexpectedly, kmeans performs best with the
basic chunk scheduler. With a precisely selected chunk
value kmeans does quite well but, as Figure 8 shows,
its performance varies by as much as 50% across chunk
sizes we tested. The adaptive schedulers are more robust
in that they do not require users to search the input space
in order to find a reasonable initial parameter.

Overall CoreTSAR scales well to at least four GPUs
without loop body or memory layout changes for
GPU-amenable applications. Further, each scheduler is
stronger for certain tasks than others, and the adaptive
scheduler is the best overall choice, even with the best
chunk sizes for chunk schedulers. It remains stable, and
within approximately 10% of optimal for all amenable
benchmarks with homogeneous iterations. For heteroge-
neous iterations, static and chunk are better options.

5.3.2 GPU-Averse Applications
These are applications that do not run well on GPUs.
Some are so sensitive to it that running any part of the
job on a GPU causes slowdown. These are included to
evaluate CoreTSAR’s response to regions that should not
use GPUs, or to running normally amenable applications
on a system where the accelerator is particularly slow.
While Jacobi solvers in general, and Helmholtz solvers in
particular, are not GPU averse as a class, the implemen-
tation of Helmholtz that we evaluate is. Our Helmholtz
is a generic CPU OpenMP version that runs correctly but
slowly when compiled for the GPU. It never performs
better by using a GPU for any work. This category also
includes three PolyBench/GPU benchmarks (FDTD2D,
GESUMMV and GRAMSCHMIDT). Each runs slower
on a GPU than on one CPU or runs many passes,
accentuating copy overhead.

In each case, schedulers that run more often, and
thus convert the GPU threads to CPU threads faster,
incur less performance loss. For the same reason, GPU-
averse benchmarks that run many small passes perform
better. For example, GESUMMV suffers more than the
others by running 10 passes rather than 50 or thousands.
For each of these benchmarks, the ability to convert
GPU control threads to CPU threads is crucial. Without
GPU backoff support, the total runtime of Helmholtz
more than doubles for both adaptive and chunk based
schedules, and as much as triples for the split schedule.

Three other benchmarks (CG, THREEDCONV,
and TWODCONV) fall into this category, but only
marginally. Each can benefit from the first GPU.
GPUs complete iterations faster than CPUs for these
benchmarks, but they only have enough work to
saturate a single GPU, or face increasing data transfer
overhead as more are added. CG passes through the
region enough times (1,900) that all but one GPU are
converted to CPU threads very early in the computation,

11

atax bicg cg corr

covar fdtd2d gem gemm

gesummv gramschmidt helmholtz kmeans

mvt syr2k syrk threedconv

threemm twodconv twomm

0

1

2

3

4

5

0

1

2

3

0.0

0.5

1.0

0

40

80

120

0

25

50

75

100

0.00

0.25

0.50

0.75

1.00

0

10

20

30

40

50

0

50

100

150

200

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.3

0.6

0.9

0

1

2

3

4

5

0

1

2

3

0

1

2

3

4

0

1

2

3

0.0

0.3

0.6

0.9

0

20

40

60

80

0.00

0.25

0.50

0.75

1.00

0

30

60

90

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4
Number of GPUs

S
pe

ed
up

 o
ve

r
8

co
re

 O
pe

nM
P

Scheduler

GPU

Static

Adaptive

Split

Quick

Chunk

Chunk static

Chunk dynamic

Hybrid chunk

Fig. 9: Performance across schedulers and number of GPUs for all benchmarks, normalized to CPU OpenMP across
8 cores.

12

cg, amdlow3 cg, armor1 cg, dna2 cg, esc. cg, hstest

gem, amdlow3 gem, armor1 gem, dna2 gem, esc. gem, hstest

kmeans, amdlow3 kmeans, armor1 kmeans, dna2 kmeans, esc. kmeans, hstest

syr2k, amdlow3 syr2k, armor1 syr2k, dna2 syr2k, esc. syr2k, hstest

0.0
0.5
1.0
1.5
2.0

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

0
10
20
30
40

0.0

0.5

1.0

1.5

0

1

2

3

4

0
10
20
30
40
50

0

10

20

0.0

2.5

5.0

7.5

0.00
0.25
0.50
0.75
1.00
1.25

0.0

0.5

1.0

0
1
2
3
4

0

1

2

3

0

2

4

6

0.0

0.5

1.0

1.5

0.0

0.5

1.0

0
1
2
3
4

0

1

2

3

Program, Machine abbreviation

S
pe

ed
up

 o
ve

r
O

pe
nM

P
 a

cr
os

s
al

l l
oc

al
 c

or
es

Scheduler Adaptive Split Quick Chunk Chunk static Chunk dynamic Hybrid chunk

Fig. 10: CoreTSAR speedup across systems

so it achieves roughly constant performance from one
to four GPUs. The convolution codes do not run long
enough to hide the overhead of extra GPUs enabled in
the first few passes and show degrading performance.

5.4 Adaptation Across Machines
We now evaluate CoreTSAR’s performance across sev-
eral disparate systems. All systems run the same OS
image and execute identical binaries for all tests. Ta-
ble 1 lists the hardware in each system in detail. Of
particular interest are the GPU-centric system amdlow3,
which contains a dual-core Intel Celeron processor and
NVIDIA C2050 GPU, and the CPU-centric system ar-
mor1 with two quad-core Intel Xeon cores and a low
power NVIDIA GT 520 GPU.

As some of our benchmarks require more memory
than the smaller GPUs posses, we selected a repre-
sentative subset (CG, GEM, kmeans, and SYR2K) with
problem sizes that fit onto all evaluated GPUs. Fig-
ure 10 shows results for these benchmarks across all
five test platforms. The most prominent feature of the
results across systems is the significant change in overall
speedup. In particular, amdlow3 exhibits consistently
high speedups using the GPU, partly due to the ex-
treme imbalance between its Intel Celeron processor and
NVIDIA C2050 GPU. Even CG shows material speedups
on amdlow3, as much as 2×. More importantly, even
though speedup and overall performance shift across
the various systems for each benchmark, the distribution
of performance by scheduler is similar. Thus, the right
CoreTSAR scheduling algorithm is more related to the
application than the hardware. Allowing the scheduler
to be determined once per region, rather than once per
machine. Further, these results show that the default
adaptive scheduler is effective across hardware config-
urations, with only GEM as an issue, as a result of its
single iteration. GEM’s strong performance on the other
devices also showcases the portability of our computed
default division of work, which for that application is
consistently near the best.

gemm helmholtz kmeans

0

10

20

30

0.0

0.5

1.0

1.5

0

2

4

CoreTSAROmpSs StarPU CoreTSAROmpSs StarPU CoreTSAROmpSs StarPU
Scheduler

S
pe

ed
up

 o
ve

r
8

co
re

 O
pe

nM
P

Scheduler
GPU

Static

Adaptive

Split

Quick

Chunk

Chunk static

Chunk dynamic

Hybrid chunk

OmpSs

StarPU

Fig. 11: Comparison of CoreTSAR with OmpSs and
StarPU.

5.5 Comparison with Blocked Task Schedulers
In order to compare CoreTSAR’s scheduling with a state
of the art heterogeneous task scheduler, we employ those
designed to support blocked task models. Specifically we
port three benchmarks (GEMM, kmeans, and Helmholtz)
to two freely available implementations of this type
of model, OmpSs and StarPU. As with Accelerated
OpenMP and CoreTSAR, we use the most straightfor-
ward port possible, transforming only the loop regions
that CoreTSAR targets. For example, Figure 1 lists a
literal transcription of the GEMM implementation on
OmpSs, calling functions defined in Figure 1.

In order to provide an accurate comparison, the
CoreTSAR codes evaluated here use the CUDA and C
functions created for OmpSs and StarPU rather than
using Accelerated OpenMP. In fact these functions were
compiled into a single object file with nvcc that was
then linked with the CoreTSAR, OmpSs and StarPU
scheduling code, thus all three are scheduling over iden-
tical compute kernels. The OmpSs version was run with
the versioning-stack scheduler, to support alternative
implementations, as well as flags to allow prefetching
and overlapping of data transfers for benchmarks where
these offered speedup (slowdown was observed in one
case). The StarPU implementations used the “dmda”
scheduler with the history-based performance model,
trained on at least ten runs before results were collected.

GEMM and Helmholtz run each row of the main
outer loop as an individual task. The outer loop for
kmeans is fine grained, so we block it into chunks of
1000 iterations for OmpSs and StarPU, and also use 1000
iteration chunks as the default for CoreTSAR’s chunk
schedulers although we allow it to adapt at runtime
where capable. Each only copies the data necessary for a
given task. For example, we only request the three rows
necessary for a given Helmholtz row. We also disable
CoreTSAR’s persistent memory support, since OmpSs
does not provide an equivalent feature, though StarPU
does.

Figure 11 presents the speedup results, calculated as

13

speedup over all 8 CPU cores with the OpenMP dynamic
schedule, with OmpSs and StarPU on the far right. While
unrelated to the performance comparison, Helmholts
shows a performance benefit using GPUs in this case. In
truth, the CPU version compiled with gcc is significantly
slower (9×) than the version evaluated earlier, while the
CUDA and OpenACC versions perform similarly.

Each of StarPU and OmpSs are block schedulers,
operating much like our Chunk scheduler, and so we ex-
pect that they would perform similarly. The expectation
holds holds for Helmholtz, wherein OmpSs performs
almost identically to CoreTSAR’s Chunk scheduler with
StarPU trailing by roughly 50%. In kmeans and GEMM
each performs quite differently, with OmpSs and StarPU
outperforming Chunk on kmeans and being heavily
outperformed by it in GEMM.

While the computation and data transfers are nearly
identical between the schedulers, the performance of
CoreTSAR using one of the granularity adapting sched-
ulers is consistently higher due to reduced overheads.
Since CoreTSAR never explicitly creates the individual
tasks, it never pays the cost to allocate or to initialize
them, only paying for the aggregate tasks it runs. This
benefit is especially noticeable in GEMM where CoreT-
SAR is 3× faster than OmpSs and 2× faster than StarPU
scheduling the same work. Given the ability to adapt
task granularity at runtime, all three would yield similar
performance. It may be worthwhile to consider adding
CoreTSAR, or a similar task-splitting design, to each of
OmpSs and StarPU to reduce overhead for this type of
computation.

6 RELATED WORK

With the proliferation of GPUs and other computa-
tional accelerators, several programming models and
task schedulers have been proposed specifically for these
environments. In addition to the blocked task schedulers,
StarPU [6], [5] and OmpSs [14], [11], which we discussed
in Section 2, other designs have been proposed. Two
major factors distinguish our work from these sched-
ulers. First, they schedule at the granularity of discrete
tasks, which in each case is defined by a function call,
and forces the user to select the appropriate granularity
of work even within a group of related tasks. Second,
they require that the task functions are implemented in
terms of blocks of data. These blocks generally need to
be contiguous chunks of data, for common cases StarPU
offers “filters” as a convenient way to divide data into
equal size chunks, and recent work on OmpSS [10] has
added support for potentially non-contiguous rectangu-
lar regions to be passed to tasks. With CoreTSAR, a task
granularity may optionally be used, but is not required
and often does not result in the best division of work.
As to data blocks or transformation of tasks to oper-
ate on them, CoreTSAR handles unblocked accelerated
OpenMP code, preserving the semantics of the original
parallel region.

More relevant are the approaches taken by Qilin [16]
and the scheduling framework presented by Ravi et
al. [17], [18]. These authors present novel heterogeneous
programming APIs that support adaptive scheduling
between CPUs and a GPU. The Qilin API is in the form
of a C++ template library that operates on special array
structures and allows runtime generation of CPU and
GPU code. Ravi et al.’s work generates CPU and GPU
code from generalized reduction specifications. Both re-
quire reimplementation of existing codes in the associ-
ated model, constrain the adaptive scheduling approach
to that used by the respective system, and target only
one GPU. Qilin uses an adaptive approach similar to
the one that we used in our previous work on Split-
ter [19] to support one GPU. However, they calculate
the division in a training pass and simply reuse it in
latter runs. The framework by Ravi et al. uses a chunk-
based mechanism, with an option to combine chunks for
scheduling on the GPU much in the way our dynamic
chunk schedule does. Alternatively, CoreTSAR handles
memory movement and adaptive scheduling of work
while preserving existing code inside the region. Further
it supports a range of scheduling mechanisms allowing
a user to select an adaptive or chunk-based approach
on a per region basis, as well as supporting an arbitrary
number of arbitrarily capable GPUs and CPUs.

Our adaptive scheduling policies are also highly re-
lated to the approach taken by Ayguadé et al. [7] in
looking for an alternative to the schedule clause in
OpenMP. Rather than employing dynamic, or chunk
style scheduling, they proposed the use of a learning
scheme to do a static split. Their specific prediction
methods and targets were different from ours, but their
assertion that the adaptive policies sometimes benefited
CPUs as well may be another reason to incorporate
something like our adaptive schedules into OpenMP.

7 CONCLUSION
We have presented the design and implementation of
CoreTSAR (Task-Size Adapting Runtime). We make four
primary contributions: the design of our scheduler for
adaptive scheduling across arbitrary numbers of hetero-
geneous devices; an implementation and optimization
of that design; the design and evaluation of seven adap-
tive scheduling policies; and our evaluation across four
scientific codes, 15 benchmark kernels and a side-by-
side comparison with OmpSs and StarPU. We achieve
speedups as high as 3.74× over the best performance
that uses all cores and a single GPU. When compared to
the original CPU performance on 8 cores, we achieve as
much as 180× for one benchmark. Further, we present
an extension to our memory management system that
transparently aligns matrices during mapping, improv-
ing performance in some cases by as much as 2.5×. These
results clearly demonstrate the benefits to be gained from
runtime adaptation of task sizes and motivate the addi-
tion of a co-scheduling interface, such as the hetero()
clause that we propose, to Accelerated OpenMP.

14

As future work, we will investigate more compre-
hensive memory association support. Starting from the
padding transformation we presented here, we will
pursue more automatic transformations to allow loop
body code to reference different memory layouts trans-
parently. In the main scheduler, CoreTSAR could au-
tomatically detect NUMA issues, and the association
of GPUs to CPUs and manage these automatically for
greater performance. Finally, the memory management
interface that we present is the first step towards a
general interface for declaring the relationship between
tasks and the portions of inputs and outputs that they
require. Given that information, many schedulers, in-
cluding ours, could automatically manage input and out-
put, providing significant value especially as computers
become more complex.

REFERENCES

[1] CUDA programming guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/, 2007.

[2] The OpenCL Specification. https://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf, Nov. 2012.

[3] OpenACC 2.0 Application Programming Interface Specifica-
tion. http://www.openacc.org/sites/default/files/OpenACC%
202%200.pdf, June 2013.

[4] R. Anandakrishnan, T. R. W. Scogland, A. T. Fenley, J. C. Gordon,
W. Feng, and A. V. Onufriev. Accelerating Electrostatic Surface
Potential Calculation with Multi-scale Approximation on Graph-
ics Processing Units. Journal of Molecular Graphics and Modelling,
28(8):904–910, June 2010.

[5] C. Augonnet, S. Thibault, and R. Namyst. StarPU: a Runtime
System for Scheduling Tasks over Accelerator-Based Multicore
Machines. Technical Report RR-7240, Laboratoire Bordelais de
Recherche en Informatique - LaBRI, RUNTIME - INRIA Bordeaux
- Sud-Ouest, Mar. 2010.

[6] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multi-
core Architectures. In International Euro-Par Conference on Parallel
Processing. Springer-Verlag, Aug. 2009.

[7] E. Ayguadé, B. Blainey, A. Duran, J. Labarta, F. Martı́nez, X. Mar-
torell, and R. Silvera. Is the Schedule Clause Really Necessary in
OpenMP? In Workshop on OpenMP Applications and Tools. Springer-
Verlag, June 2003.

[8] D. H. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS
Parallel Benchmarks Summary and Preliminary Results. In In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SuperComputing), pages 158–165, 1991.

[9] J. C. Beyer, E. J. Stotzer, A. Hart, and B. R. de Supinski. OpenMP
for Accelerators. In Lecture Notes in Computer Science: OpenMP in
the Petascale Era, pages 108–121. Springer Berlin Heidelberg.

[10] J. Bueno, X. Martorell, R. M. Badia, E. Ayguadé, and J. Labarta.
Implementing OmpSs Support for Regions of Data in Archi-
tectures with Multiple Address Spaces. In ACM International
Conference on Supercomputing. ACM, June 2013.

[11] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell,
E. Ayguadé, and J. Labarta. Productive Programming of GPU
Clusters with OmpSs. International Parallel and Distributed Pro-
cessing Symposium, pages 557–568, 2012.

[12] M. Daga, T. R. W. Scogland, and W. Feng. Architecture-Aware
Mapping and Optimization on a 1600-Core GPU. In Interna-
tional Conference on Parallel and Distributed Systems, pages 316–323,
Tainan, Taiwan, 2011. IEEE Computer Society.

[13] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A Hybrid Multi-Core
Parallel Programming Environment. In GPGPU 2007: Workshop
on General Purpose Processing on Graphics Processing Units, 2007.

[14] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas. OmpSs: A Proposal for Program-
ming Heterogeneous Multi-Core Architectures. Parallel Processing
Letters, 21(2):173–193, 2011.

[15] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cava-
zos. Auto-Tuning a High-Level Language Targeted to GPU Codes.
Innovative Parallel Computing, pages 1–10, 2012.

[16] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism
on Heterogeneous Multiprocessors with Adaptive Mapping. In
MICRO 42: Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, Dec. 2009.

[17] V. T. Ravi and G. Agrawal. A Dynamic Scheduling Framework
for Emerging Heterogeneous Systems. In International Conference
on High Performance Computing (HiPC), pages 1–10, 2011.

[18] V. T. Ravi, W. Ma, D. Chiu, and G. Agrawal. Compiler and
runtime support for enabling generalized reduction computations
on heterogeneous parallel configurations. In ACM International
Conference on Supercomputing. ACM, June 2010.

[19] T. R. W. Scogland, B. Rountree, W. Feng, and B. R. de Supinski.
Heterogeneous Task Scheduling for Accelerated OpenMP. In
International Parallel and Distributed Processing Symposium, pages
144–155. IEEE Computer Society, May 2012.

[20] T. R. W. Scogland, B. Rountree, W. Feng, and B. R. de Supinski.
CoreTSAR: Adaptive Worksharing for Heterogeneous Systems. In
International Supercomputing Conference, Leipzig, June 2014.

[21] M. Wolfe. Implementing the PGI Accelerator Model. In Annual
Workshop on General Purpose Processing with Graphics Processing
Units. ACM, Mar. 2010.

Thomas R.W. Scogland is a Ph.D. candidate
in the Department of Computer Science at Vir-
ginia Tech (VT), where he is a member of the
Synergy Lab. His primary research area is in
high-performance computing, with a focus on
scheduling in heterogeneous systems and green
computing. He received a B.S. degree in Com-
puter Science from Purdue University in 2007
a NDSEG Graduate Fellowship in 2009 and his
M.S. from Virginia Tech in 2012. He is a student
member of the ACM and IEEE.
Wu-chun Feng is the Elizabeth & James E.
Turner Fellow and Professor of Computer Sci-
ence, Electrical & Computer Engineering, and
Health Sciences at Virginia Tech (VT), where he
also directs the Synergy Laboratory. Grassroots
projects that he leads include the Green500,
Supercomputing in Small Spaces, and MyVICE.
His research interests encompass a broad range
of topics in efficient parallel and distributed com-
puting, including high-performance computing
and networking, energy-efficient (or green) su-

percomputing, heterogeneous and GPU computing, cloud and grid
computing, MOON computing, bioinformatics, and computer science
pedagogy for K-12.

He received B.S. degrees in Computer Engineering and Music (Hon-
ors) and M.S. degree in Computer Engineering at Penn State University
in 1988 and 1990, respectively. He then earned his Ph.D. in Computer
Science at the University of Illinois at Urbana-Champaign in 1996. He is
a Distinguished Member of ACM and Senior Member of IEEE.

Barry Rountree received a BA in Theater Arts
and Drama from the Ohio University Honors
Tutorial College, an MS in Network and System
Administration from Florida State University, and
a PhD in Computer Science from the University
of Arizona. His current work focuses on optimiz-
ing massively parallel performance under hard
electrical power bounds, particularly with regard
to exascale system designs.

Bronis R. de Supinski is the Chief Tech-
nology Officer (CTO) for Livermore Computing
(LC) at Lawrence Livermore National Laboratory
(LLNL). In this role, he is responsible for formu-
lating LLNL’s large-scale computing strategy and
overseeing its implementation. His research has
explored topics including programming models,
algorithms, performance, code correctness and
resilience for future large scale systems. He
currently continues his interests in these topics,
particularly programming models, and serves as

the Chair of the OpenMP Language Committee. Throughout his career,
Bronis has won several awards, including the prestigious Gordon Bell
Prize in 2005 and 2006, as well as an R&D 100 for his leadership of a
team that developed a novel scalable debugging tool. He is a member
of the ACM and the IEEE Computer Society.

